Статистические алгоритмы оптимальной фильтрации сигналов в нелинейных диффузионно-скачкообразных стохастических системах

Константин Александрович Рыбаков

Аннотация


В статье предложен статистический алгоритм приближенного решения задачи оптимальной нелинейной фильтрации, а также его модификации. Модель системы наблюдения описывается стохастическими дифференциальными уравнениями, одно из которых содержит не только диффузионную компоненту, но и скачкообразную. Основу предложенных алгоритмов составляет переход от задачи фильтрации к задаче анализа стохастических систем с обрывами и ветвлениями траекторий с помощью интерпретации одного из слагаемых в соответствующем уравнении Дункана–Мортенсена–Закаи как функции поглощения и восстановления реализаций вспомогательного случайного процесса. Решение такой задачи анализа можно найти приближенно, используя методы численного решения стохастических дифференциальных уравнений и методы моделирования неоднородных пуассоновских потоков событий. В работе приведен алгоритм совместного моделирования системы наблюдения и приближенного оценивания, основанный на применении метода «максимального сечения». Преимущества разработанного алгоритма состоят в простоте реализации и универсальности, а именно возможности решения задачи оптимальной фильтрации для линейных и нелинейных моделей объекта наблюдения и измерительной системы, для одномерного и многомерного случаев.

Ключ. слова


апостериорная плотность вероятности; ветвящийся процесс; диффузионный процесс; метод статистических испытаний; оптимальная фильтрация; скачкообразный процесс; стохастическая система; уравнение Дункана–Мортенсена–Закаи

Полный текст:

PDF

Литература


Рыбаков К. А. Сведение задачи нелинейной фильтрации к задаче анализа стохастических систем с обрывами и ветвлениями траекторий // Дифференциальные уравнения и процессы управления. 2012. № 3. С. 91-110.

Рыбаков К. А. Модифицированный алгоритм оптимальной фильтрации сигналов на основе моделирования специального ветвящегося процесса // Авиакосмическое приборостроение. 2013. № 3. С. 15-20.

Казаков И. Е., Артемьев В. М., Бухалев В. А. Анализ систем случайной структуры. М.: Физматлит, 1993.

Рыбаков К. А. Алгоритмы прогнозирования состояний в стохастических дифференциальных системах на основе моделирования специального ветвящегося процесса // Дифференциальные уравнения и процессы управления. 2015. № 1. С. 25-38.

Пантелеев А. В., Руденко Е. А., Бортаковский А. С. Нелинейные системы управления: описание, анализ и синтез. М.: Вузовская книга, 2008.

Михайлов Г. А., Аверина Т. А. Алгоритм «максимального сечения» в методе Монте-Карло // Доклады АН. 2009. Т. 428, № 2. С. 163-165.

Михайлов Г. А., Рогазинский С. В. Модифицированный метод «мажорантной частоты» для численного моделирования обобщенного экспоненциального распределения // Доклады АН. 2012. Т. 444, № 1. С. 28-30.

Аверина Т. А. Методы статистического моделирования неоднородного пуассоновского ансамбля // Сибирский журнал вычислительной математики. 2009. Т. 12, № 4. С. 361-374.

Пугачев В. С., Синицын И. Н. Стохастические дифференциальные системы. Анализ и фильтрация. М.: Наука, 1990.

Руденко Е. А. Оптимальная структура непрерывного нелинейного фильтра Пугачева пониженного порядка // Известия РАН. Теория и системы управления. 2013. № 6. С. 25-51.

Руденко Е. А. Оптимальный конечномерный непрерывный нелинейный фильтр произвольного порядка // XII Всероссийское совещание по проблемам управления. Москва, 16-19 июня 2014 г.: Тр. М.: Институт проблем управления РАН, 2014. С. 676-687.

Рыбаков К. А. Приближенный метод фильтрации сигналов в стохастических системах диффузионно-скачко-образного типа // Научный вестник МГТУ ГА. 2014. № 207. С. 54-60.

Аверина Т. А., Рыбаков К. А. Два метода анализа стохастических систем с пуассоновской составляющей // Дифференциальные уравнения и процессы управления. 2013. № 3. С. 85-116.

Параев Ю. И. Введение в статистическую динамику процессов управления и фильтрации. М.: Советское радио, 1976.

Рыбаков К. А. Модифицированные статистические алгоритмы фильтрации и прогнозирования в непрерывных стохастических системах // Известия Института математики и информатики УдГУ. 2015. № 2 (46). С. 155-162.


Ссылки

  • Ссылки не определены.